New canine spinal cord injury model free from laminectomy.

نویسندگان

  • Seijun Fukuda
  • Tatsuo Nakamura
  • Yoshihiro Kishigami
  • Katsuaki Endo
  • Takashi Azuma
  • Takamitsu Fujikawa
  • Sadami Tsutsumi
  • Yasuhiko Shimizu
چکیده

The present report details the successful development of a model for spinal cord injury (SCI). This model is simple, reproducible, and requires no laminectomy. Development of the model was carried out using fourteen dogs. A balloon catheter was inserted into the extradural space via the intervertebral foramen of each dog, then the balloon was inflated at the L1 level by injection of saline. Six dogs underwent compression with a balloon volume of 1.5 ml, three dogs with a volume of 1.0 ml, and the remaining five dogs were used as uninjured controls. We applied the Basso, Beattie, and Bresnahan (BBB) locomotor rating scale to the dogs. Compression of the spinal cord for 10 min at 1.5 ml produced severe paraplegia (BBB remained zero or one for 6 months following surgery), while compression for the same time interval at 1.0 ml produced moderate paraplegia. Electrophysiological tests showed no hindlimb movement upon stimulation cranial to the site of injury in the 1.5-ml group. The volume of abnormal-intensity lesions in the 1.0-ml group calculated using MR imaging showed no marked changes in either high- or low-intensity lesions after 3 months, whereas in the 1.5-ml group, the low-intensity lesions alone showed a marked increase. Pathological examination of the damaged spinal cord showed the formation of cavities surrounded by scar tissue containing high levels of collagen. These findings closely resembled those of clinical cases. It was concluded that 10 min of balloon compression with a volume of 1.5 ml caused irreversible paraplegia in dogs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

اثر متیل پردنیزولون بر ضرب‌العجل درمانی هیپوترمی سیستمیک در درمان ضایعه تروماتیک تجربی خفیف نخاع در رت

    Background and Aim: Many studies have shown the neuroprotective effect of systemic hypothermia in the treatment of spinal cord injury. But the effect of delay hypothermia is not known.The goal of this study was to evaluate the effects of Methylprednisolone on the therapeutic window of hypothermia treatment following experimental Spinal Cord Injury (SCI) by measuring the accumulation of Poly...

متن کامل

Systemic Effects of Experimental Spinal Cord Injury on Bone Healing in Rabbit

Bone loss after spinal cord injury leads to increased fragility of bone and subsequent risk for low-trauma fractures in the sublesional parts of the body. Although in such injuries upper limbs are normally innervated, bone loss may occur in the upper extremities. The present study was designed to determine the systemic effects of spinal cord injury on the fracture healing of upper limbs in rabb...

متن کامل

Induction of Traumatic Spinal Cord Injury in Rat Using a Device Made in Tabriz University of Medical Sciences

Abstract Backgrond:Spinal cord injury (SCI) leads to a serious neurological condition, associating with sensory and motor dysfunctions as well as urinary infections. In the experimental situations, using a valid SCI model helps to understand pathophysiological mechanisms and better ascertainment of therapeutic interventions. Because contusion type of SCI occurs commonly in human, in the pr...

متن کامل

Functional recovery assessment of spinal cord contusion model in male rats without therapeutic interventions

Introduction: Spinal cord injury (SCI) is one of the most serious clinical diseases, which not only affects the patient's physical and mental status, but its effects will be spread to family and community. After severe spinal cord injury, astrocytes of the central nervous system (CNS) become reactive astrocytes, and play the main role of glial scar formation. The scar is a major obstacle to r...

متن کامل

Improvement of Spinal Cord Injury in Rat Model via Transplantation of Neural Stem Cells Derived From Bone Marrow

Abstract Background & Aims: Cell therapy is among the novel therapeutic methods effective in the treatment of spinal cord injuries. The aim of the present study was using neural stem cells (NSCs) in treating contusion spinal cord injury in rat model. Methods: Bone marrow stromal cells (BMSCs) were isolated from adult rats...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Brain research. Brain research protocols

دوره 14 3  شماره 

صفحات  -

تاریخ انتشار 2005